当前位置:作文吧实用文档工作计划内容页

初三下册数学教学工作计划

初三下册数学教学工作计划 (一)

一、教学内容

本章较为系统的研究成比例线段、相似图形、相似三角形、中位线、位似图形、图形与坐标等,探索并体验相似在现实生活中的广泛应用。本章是继图形的全等之后集中研究图形形状的内容,是对图形全等知识的进一步拓展和发展。整个设计力图引导学生观察、分析生活现实和教学现实的相似现象,总结图形相似的有关特征并自觉应用到现实之中。同时,通过“相似图形”进一步丰富学生的教学活动经验,有意识的培养学生积极的情感态度,认识教学丰富的人文价值,促进学生观察、分析、归纳、概括等一般能力和审美意识的发展。

二、教学目标

1、通过生活中的实际认识物体和图形的相似,知道相似与轴对称、平移、旋转一样,也是图形之间的一种变换。

2、探索并确认相似图形的性质,知道相似多边形的对应角相等,对应边成比例以及面积比的关系。

3、了解线段的比、成比例线段的概念,比例的基本性质,会判断以知线段是否成比例。

4、了解相似三角形的概念,探索两个三角形相似的条件及其主要性质。

5、能利用相似三角形的性质解决一些简单的实际问题。

6、了解图形的位似,能利用位似的方法将一个图形放大或缩小。

7、了解三角形和梯形的中位线定理、三角形重心的概念以及有关应用。

8、能建立适当的坐标系,描述物体的位置。能灵活运用不同的方式确定物体的位置。

9、在同一直角坐标系中,感受图形变换后点的坐标的变化。

10、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生的演绎推理能力。

三、教学重点难点

1、教学重点:成比例线段、相似三角形和相似多边形的性质和判定,位似图形的概念和作法。

2、教学难点:利用性质和判定分析和解决问题。

3、教学关键:成比例线段、相似三角形的性质和判定。

四、教学策略

1、采用引导发现法培养学生类比推理能力;采用尝试指导法,逐步培养学生独立思考的能力及语言表达能力。充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识。作文吧 WWW.zuOwEnBa.Net

2、让学生充分发表自己的见解,给学生一定的时间和空间自主探索每一个问题,而不是急于告诉学生结论。

3、充分发挥小组合作,多开展讨论交流,让学生自己找到答案。

初三下册数学教学工作计划 (二)

一、指导思想

以《初中数学新课程标准》为依据,全面推进素质教育。数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

二、教材目标及要求

1、分式的重点是分式的四则运算,难点是分式四则混算、解分式方程以及列分式方程解应用题。

2、反比例函数掌握反比例函数的概念,性质,并利用其性质解决一些实际问题。进一步理解变量与常量的辩证关系,进一步认识数形结合的思维方法。

3、勾股定理:会用勾股定理和逆定理解决实际问题。

4、四边形的重点是平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称。

5、数据描述

三、教学措施

1、加强教学“六认真”,面向全体学生。由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。帮助他们解决学习中的困难,使他们经过努力,能够达到大纲中规定的基本要求,对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。

2、重视改进教学方法,坚持启发式,反对注入式。教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理新课知识,指出重点和易错点,解答学生预习时遇到的问题,再设计提高题由学生进行尝试,使学生在学习中体会成功,调动学习积极性,同时也可激励学生自我编题。努力培养学生发现、得出、分析、解决问题的能力,包括将实际问题上升为数学模型的能力,注意激励学生的创新意识。

3、改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、浅三个层次作业,使每类学生都能在原有基础上提高。

4、课后辅导实行流动分层。

四、教学进度(课时安排)

第十六章分式……………………………13课时

16.1分式……………………………………2课时

16.2分式的运算……………………………6课时

16.3分式方程……………………………3课时

复习小节与检测……………………………2课时

第十七章反比

初三下册数学教学工作计划 (三)

一、教学安排

第1--2周 反比例函数

第2--4周 锐角三角函数

第5周 投影与视图和本期内容测试

第6周 复习七年级数学

第7--8 周 复习八年级数学

第9--10周 复习九年级数学

第11-12周 专题复习和中考模拟测试

第13周 查漏补缺,中考考前培训

二、在教学过程中抓住以下几个环节

(1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。

(2)上好课:在备好课的基础上,上好每一个40分钟,提高40分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。

(3)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。

(4)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。

(5)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。

(6)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

(7)积极与其它老师沟通,加强教研教改,提高教学水平。

(8)经常听取学生良好的合理化建议。

(9)以“两头”带“中间”战略思想不变。

(10)深化两极生的训导。

三、不断钻研业务,提高业务能力及水平。

积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更开拓,方法更灵活,手段更先进。

四、分层辅导,因材施教

对本年级的学生实施分层辅导,利用优胜劣汰的方法,激励学生的学习激情,保证升学率及优良率,提高及格率。对部分差生实行义务补课,以提高成绩。

五、严格按照教学进度,有序的进行教学工作。

用心去做,从细节去做,尽自己追大的努力,发挥自己最大的能力去做好初三毕业班的教学工作。

六、强化复习指导。

分二阶段复习:

(一)第一阶段全面复习基础知识,加强基本技能训练让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。 这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。

1、重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。

2、 按知识板块组织复习。把知识进行归类,将全初中数学知识分为十一讲:第一讲数与式;第二讲 方程与不等式;第三讲函数;第四讲统计与概率;第五讲基本图形;第六讲 图形与变换;第七讲角、相交线和平行线;第八讲 三角形;第九讲 四边形;第十讲三角函数学;第十一讲圆 。 复习中由教师提出每个讲节的复习提要,指导学生按“提要”复习,同时要注意引导学生根据个人具体情况把遗忘了知识重温一遍,边复习边作知识归类,加深记 忆,注意引导学生弄清概念的内涵和外延,掌握法则、公式、定理的推导或证明,例题的选择要有针对性、典型性、层次性,并注意分析例题解答的思路和方法。

3、重视对基础知识的理解和基本方法的指导。基础知识即初中数学课程中所涉及的概念、公式、公理、定理等。要求学生掌握各知识点之间的内在联系,理清知识 结构,形成整体的认识,并能综合运用。例如一元二次方程的根与二次函数图形与x轴交点之间的关系,是中考常常涉及的内容,在复习时,应从整体上理解这部分 内容,从结构上把握教材,达到熟练地将这两部分知识相互转化。又如一元二次方程与几何知识的联系的题目有非常明显的特点,应掌握其基本解法。 中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,换元法,判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应熟练掌握。

4、重视对数学思想的理解及运用。如函数的思想,方程思想,数形结合的思想等。

(二)第二阶段综合运用知识,加强能力培养,构建初中数学知识结构和网络,从整体上把握数学内容,以构建初中数学知识结构和网络为主,从整体上把握数学内容,提高能力。

培养综合运用数学知识解题的能力,是学习数学的重要目的之一。这个阶段的复习目的是使学生能把各个讲节中的知识联系起来,并能综合运用,做到举一反三、触类 旁通。这个阶段的例题和练习题要有一定的难度,但又不是越难越好,要让学生可接受,这样才能既激发学生解难求进的学习欲望,又使学生从解决较难问题中看到 自己的力量,增强前进的信心,产生更强的求知欲。第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。这一阶段尤其要精心设计每一节复习 课,注意数学思想的形成和数学方法的掌握。初中总复习的内容多,复习必须突出重点,抓住关键,解决疑难,这就需要充分发挥教师的主导作用。而复习内容是学 生已经学习过的,各个学生对教材内容掌握的程度又各有差异,这就需要教师千方百计地激发学生复习的主动性、积极性,引导学生有针对性的复习,根据个人的具 体情况,查漏补缺,做知识归类、解题方法归类,在形成知识结构的基础上加深记忆。除了复习形式要多样,题型要新颖,能引起学生复习的兴趣外,还要精心设计 复习课的教学方法,提高复习效益。

初三下册数学教学工作计划 (四)

一、学情分析:

本学期我仍担任初三年级的数学教学工作,经过上一学期的努力,很多学生在学习风气上有了较大的改变,学习积极性有所提高,也有不少学生自知能力较差,特别是到了最后一学期,有些学生对自己要求不严,甚至自暴自弃,这些都需要针对不同情况采取相应的措施,耐心教育,此外,面临中考阶段对学生要有总体的掌握,使之考出好成绩。

二、教材分析:

本学期的内容只剩最后一章:园。

圆这一章的主要内容是圆的定义和性质,点、直线、圆与圆的位置关系,圆的切线,弧长和扇形的面积,圆锥的侧面展开图。本章涉及的概念、定理较多,应弄清来龙去脉,准确理解和掌握概念和定理。垂径定理及推论、圆的切线的判定定理和性质定理是本章的重点。垂径定理、圆周角定理的证明、运用与圆有关的性质解决实际问题,是本章的难点。

除了这一章,还要复习初中数学教材其他的内容。

三、教学目标:

1、知识与技能:理解点、直线、圆与圆的位置关系,弧长和扇形的面积,圆锥的侧面展开图,掌握圆的切线及与圆有关的角等概念和计算。教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理的进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理,提高学生学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度,掌握初中数学教材、数学学科“基本要求”的知识点。

2、过程与方法:经历探索过程,让学生进一步体会数学来源与实践,又反应用于实践,通过探索、学习,使学生逐步学会正确、合理的进行运算,逐步学会观察、分析、综合、抽象、会用归纳、演绎、类比进行简单的推理,围绕初中数学教材、数学学科“基本要求”进行知识梳理,围绕初中数学主要内容进行专题复习,适时地进行分层教学,面向全体学生、培养学生、发展全体学生。

3、情感目标及价值观:通过学习交流、合作、讨论的方式,积极探索,激发学生的学习兴趣,改进学生的学习方式,提高学习质量,逐步形成正确的教学价值观,使学生的情感得到发展。

四、教学重点与难点

重点:

《圆》这章中垂径定理及推论、圆的切线的判定定理和性质定理是本章的重点。

难点:

垂径定理、圆周角定理的证明、运用与圆有关的性质解决实际问题。

五、教学中要采取的措施:

1、认真学习钻研新课标,通盘熟悉初中数学教材及教学目标,认真备好每一堂课,精心制作总复习计划。

2、认真上好每一堂课,抓住关键,分散难点,突出重点,在培养能力上下功夫。

3、重视课后反思,及时将每一节课的得失记录下来,不断的积累教学经验。

4、积极与其他老师沟通,提高教学水平。

5、积极听取家长与学生良好的合理建议。

6、以“两头”带“中间”的战略。

7、注重教学中的自主学习、合作学习、探索学习等学习方法的引导。

初三下册数学教学工作计划 (五)

教学目标:

1、知识目标:

①了解位似图形及其有关概念;

②了解位似图形上任意一对对应点到位似中心的距离之比等于位似比。

2、能力目标:

①利用图形的位似解决一些简单的实际问题;

②在有关的学习和运用过程中发展学生的应用意识和动手操作能力。

3、情感目标:

①通过学习培养学生的合作意识;

②通过探究提高学生学习数学的兴趣。

教学重点:

探索并掌握位似图形的定义和性质;

教学难点:

运用定义和性质进行简单的位似图形的证明和计算。

教学方法:

从学生生活经验和已有的知识出发,采用引导、启发、合作、探究等方法,经历观察、发现、动手操作、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习;提高学生自主探究、合作交流和分析归纳能力;同时在教学过程对不同层次的学生进行分类指导,让每个学生都得到充分的发展。

教学准备:

刻度尺、为每个小组准备好打印的五幅位似图形、多媒体展示课件、

教学手段:

小组合作、多媒体辅助教学

教学设计说明:

1、为了便于学生理解位似图形的特征,我在设计中特别注意让学生通过动手操作、猜想、试验等方式获得感性认识,然后通过归纳总结上升到理性认识,将形象与抽象有机结合,形成对位似图形的认识.

2、探索知识是本节的重点,设计这一环节,通过学生的做、议、读、想、试等环节来完成,把学习的主动权充分放给学生,每一环节及时归纳总结,使学生学有所获,探索创新.

教学过程:

一、创设情境 引入新知

观察大屏幕有五个图形,每个图形中的四边形abcd和四边形a1b1c1d1 都是相似图形。分别观察着五个图形,你发现每个图形中的两个四边形各对应点的连线有什么特征?

(学生经过小组讨论交流的方式总结得出:)

特点:(1)两个图形相似:

(2)每组对应点所在的直线交于一点。

二、合作交流 探究新知

请同学们阅读课本58页,掌握什么叫位似图形、位似中心、位似比?如果两个相似图形的每组对应点所在的直线交于一点,那么这样的两个图形叫做位似图形,这个交点叫做位似中心,这时两个相似图形的相似比又叫做它们的位似比。议一议 观察上图中的五个图形,回答下列问题: (1) 在各图形中,位似图形的位似中心与这两个图形有什么位置关系? (2) 在各图中,任取一对对应点,度量这两个点到位似中心的距离。它们的比与位似比有什么关系?再换一对对应点试一试。(每小组同学拿出准备好的位似图形通过观察、测量试验和计算得出:)

位似图形对应点到位似中心的距离之比等于相似比。由此得出:

位似图形的对应点和位似中心在同一条直线上,它们到位似中心的距离之比等于相似比。三、指导应用 深化理解

(同学们观察大屏幕出示的问题)

例1如图d,e分别是ab,ac上的点。(1)如果de∥bc,那么△ade和△abc位似图形吗?为什么?(2)如果△ade和△abc是位似图形,那么de∥bc吗?为什么?小组讨论如何解这道题:问题1,证位似图形的根据是什么?需要哪几个条件?

根据是位似图形的定义。

需要两个条件:

!、△ade和△abc相似;

2、对应点所在的直线交于一点。

问题2:已知△ade和△abc是位似图形,我们根据什么又能得出什么结论?

根据位似图形的性质得出:

1、对应点和位似中心在同一条直线上;

2、它们到位似中心的距离之比等于相似比。

(一生口述师板书:)

解:(1)△ade和△abc是位似图形.理由是:

∵de∥bc

∴∠aed=∠b, ∠aed=∠c.

∵△ade∽△abc.

又∵点a是△ade和△abc的公共点,点d和点b是对应点,点e和点c是对应点,直线bd与ce交于点a,

∴△ade和△abc是位似图形。

(2)de∥bc.理由是:

∵△ade和△abc是位似图形

∴△ade∽△abc.

∴∠ade=∠b,

∴de∥bc.

四、继续观察 拓展提高

(同学们继续观察屏幕展示的图形)在图(1)——(5)中,位似图形的对应线段ab与a1b1是否平行?bc与b1c1,cd与c1d1,ad与a1d1是否平行?为什么?

同桌观察探究并发言:对应边平行或在同一条直线上。

(出示课件:展示一组位似图形,动画闪动图形的对应边,直观展示位似图形的对应边平行或在同一条直线上)

五、反馈练习 落实新知

挑战自我:

1、下面每组图形中都有两个图形.

(1)哪一组中的每两个图形是位似图形?

(2)作出位似图形的位似中心

2、如图ab,cd相交于点e,ac∥db. △ace与△bde是位似图形吗?为什么?

(此环节由学生独立完成,第二题让一名学生到黑板上板书,以备面对全体矫正)

六、归纳小结 反思提高

请同学们谈一谈本节课的有什么收获和感想?

本节课我们学习了位似图形,知道了什么叫位似图形,位似图形有什么性质?我们可以利用定义来证明位似图形,已知位似图形我们可以根据性质得到有关结论。观察并判断位似图形的方法是,一要看是否相似,二要看对应边是否平行或在同一条直线上。

七、自我评价 检测新知

1、如果两个位似图形的每组________所在的直线都_________,那么这样的两个图形叫做位似图形,这个点叫做________,这时的相似比又叫做________。

2、位似图形的对应点到位似中心的距离之比等于_____________;位似图形的对应角__________,对应线段__________(填:“相等”、“平行”、“相交”

、“在一条直线上”等)

3、位似图形的位似中心,有的在对应点连线上,有的在___________的延长线上。

4、如果两个位似图形成中心对称,那么这两个图形__________(填“一定”、“不”或“可能”等)

5、下列每组图形是由两个相似图形组成的.,其中_____________中的两个图形是位似图形。

(由学生独立完成,教师巡视。最后公布答案,教师并将发现的问题及时矫正有利于学生知识的巩固和提高)

八、课后延伸 探索创新

在如图所示的图案中,最外圈的8个三角形组成的图形和次外圈的8个红色三角形组成的图形是位似图形吗?如果是,为似比是多少?